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PREFACE 

This report documents analysis originating from more comprehen- 
sive RAND research to establish an investment strategy for U.S. space 
systems and concepts of operation for countering critical mobile 
targets. The work was conducted within the Project AIR FORCE 
Force Modernization and Employment program, under the auspices 
of the C4I/Space project, for the Air Combat Command. 

The study describes an analytical tool useful in establishing figures of 
merit for satellites in a notional operational setting in which ballistic 
missile defenses are employed. A framework familiar to system de- 
signers is described pedagogically, and its utility in deriving opera- 
tional implications is demonstrated for one interesting case. The 
report should be useful to decisionmakers and analysts within the 
U.S. Air Force and the Department of Defense, as well as others 
generally concerned with theater missile defense architectures and 
operational effectiveness analysis. 

PROJECT AIR FORCE 

Project AIR FORCE, a division of RAND, is the Air Force federally 
funded research and development center (FFRDC) for studies and 
analyses. It provides the Air Force with independent analyses of 
policy alternatives affecting the development, employment, combat 
readiness, and support of current and future aerospace forces. Re- 
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search is performed in three programs: Strategy, Doctrine, and Force 
Structure; Force Modernization and Employment; and Resource 
Management and System Acquisition. 

Project AIR FORCE is celebrating 50 years of service to the United 
States Air Force in 1996. Project AIR FORCE began in March 1946 as 
Project RAND at Douglas Aircraft Company, under contract to the 
Army Air Forces. Two years later, the project's contract and person- 
nel were separated from Douglas to form a new, private nonprofit 
institution to improve public policy through research and analysis 
for the public welfare and security of the United States—the founda- 
tion of what is known today as RAND. 
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SUMMARY 

Thirty-three nations, a number of which actively pursue policies 
contrary to U.S. interests, possess TBMs. Moreover, the exportable 
supply of TBMs continues to grow through worldwide development 
efforts, and missiles of increased range and payload could find their 
way into the weapons inventories of many nations during the next 
decade. Coupled with a concomitant spread of weapons of mass 
destruction (WMD), such TBMs could permit a strike capability that 
could threaten regional balances, U.S. allies, or even U.S. forces 
deployed overseas. Thus, although there are diplomatic efforts to 
curtail missile proliferation,1 the United States has undertaken an 
ambitious research and development effort in theater missile 
defense (TMD). 

Active defenses, passive defenses, attack operations, and command, 
control, communications, and intelligence (C3I) form the four "pil- 
lars" of the U.S. theater defense program.2 As theater missile de- 
fenses are fielded at the decade's end, satellite sensors will likely play 
an important supporting role. How might these sensors contribute 
to C3I in the TMD environment? 

xThe Missile Technology Control Regime (MTCR) is one such effort. Created in 1987, 
the MTCR controls the transfer of technologies that could aid the unmanned delivery 
of a 500-kilogram payload over a 300-kilometer distance. For a brief description of the 
MTCR, see Ballistic Missile Defense Organization, Ballistic Missile Proliferation: An 
Emerging Threat, Arlington, Virginia: System Planning Corporation, 1992, pp. 64-65. 
2C3I is in a sense the foundation supporting these pillars, rather than a pillar itself. 
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Consider the notional missile launch depicted in Figure S.l. A satel- 
lite sensor in position to view a boosting TBM3 can in principle pro- 
vide useful information to a variety of theater defense platforms. By 
gathering information on the TBM trajectory, for example, a "for- 
ward track" of the missile can be derived, enabling the time and lo- 
cation of missile impact to be estimated. If relayed to the target area 
in a timely manner, appropriate passive defensive measures may be 
employed. In addition, the forward track can include estimates of 
the missile position as a function of time along the trajectory. Such 
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Figure S.l—Satellite Sensors Support Both Forward and 
Target Area Defenses 

3To simplify our discussion, we use the term "satellite sensor" to represent a 
spaceborne platform capable of detecting missiles during the boost-phase only. 
Sensors capable of detecting TBMs after booster burnout (e.g., Brilliant Eyes-type 
systems) are not considered here. 
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estimates could be used to cue search radars of active defense sys- 
tems, and perhaps provide fire-control quality "launch baskets" for 
TBM interceptors.4 

Similarly, a TBM "backtrack" to the launch point provided by satel- 
lite sensors could support attack operations with aircraft or ground- 
launched weapons. During the Gulf War, Scud launchers could be 
moved within minutes of missile firing, and after 15 minutes could 
be anywhere within nine miles of the launch point, underscoring the 
importance of timely response.5 By detecting and tracking the TBM 
during boost-phase,6 however, the spaceborne systems considered 
here have the potential to supply information for such a response, 
and to do so nearly globally on an essentially continuous coverage 
basis. 

To examine the capabilities satellites bring to bear in the TMD envi- 
ronment, we describe a filtering methodology for the estimation and 
prediction of ballistic missile trajectories7 and apply it to a notional 
TBM with a boost-phase of 100-sec duration and a total range of 1200 
km. During the estimation sequence, measurements of the missile 
trajectory are obtained from an assumed template,8 constructed by 
modeling the missile's flight in the atmosphere of a spherical, non- 
rotating earth. The state vector we estimate is defined in six dimen- 
sions, with elements representing the missile's latitude, longitude, 
heading, time, and altitude at launch, as well as its loft angle during 
boost-phase. We assume a launch in Iran (at 34.01° latitude, 47.40° 
longitude) with a 263° heading,9 impacting Tel Aviv at 32.05° lati- 

4In the case of boost-phase/ascent-phase intercept, time constraints may limit the 
utility of satellite-based information. 
Secretary of Defense, Conduct of the Persian Gulf War: Final Report to Congress, 
Washington, D.C.: U.S. Government Printing Office, April 1992, p. 224. 
6Depending on the type of missile, boost-phases typically last between 30 and 120 sec. 
See Congressional Budget Office, The Future of Theater Missile Defense, Washington, 
D.C.: U.S. Government Printing Office, June 1994, p. 5. 
7While particulars may vary, a similar methodology is likely to be used in any 
operational system that is tasked with TBM trajectory analysis. 
8We simulate the measurement process in order to estimate the errors one might 
expect using the filter technique. In the field, measurements would be obtained from 
the actual missile under observation.   See Chapter Three for a more detailed 
description. 
90c represents due north and 90° represents due east. 
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tude, 34.77° longitude. The relevant geometry is illustrated in Figure 
S.2, where the satellites are positioned in geosynchronous orbit at 0° 
latitude, and 15° and 75° east longitude, respectively.10 

The two satellites sample the trajectory independently, each measur- 
ing two angles (which are subject to random errors and bias) at 20- 
sec intervals (the assumed revisit time11). To begin filtering, we must 
specify the initial covariance of the state estimate error before 
measurement.12 We assume an initial 1° uncertainty in launch lati- 
tude and longitude, 20° uncertainty in launch heading, 20-sec uncer- 
tainty in launch time, 1-km uncertainty in launch altitude, and a 1° 

RANDAOT737-S.2 

Missile launch: 
Iran to Israel 

Figure S.2—Geometry of TBM Trajectory and Sensors 

10Although we illustrate the methodology for a notional missile launch and satellite 
configuration, the formulas and equations derived are generally applicable to a wide 
range of threat scenarios and sensor constructs. 
11 In a sensitivity excursion, we later examine the effects on the trajectory analysis of 
varying the revisit time. 
12See Chapter Two for a detailed description of the estimation sequence. 
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uncertainty in loft angle. For simplicity, we assume clouds do not 
present a viewing problem, and ignore effects of early booster engine 
cutoff.13 

NOTIONAL RESULTS: RANDOM ERRORS ONLY 

One useful application of the filtering methodology is in estimating 
the uncertainty associated with the location of a TBM launch. As 
depicted in Figure S.3, launch point uncertainty (LPU) may be re- 
duced significantly by processing the measurements from both 
satellites sequentially (i.e., stereo processing). (Here, £ = 2 corre- 
sponds to an 87 percent confidence level.14) The LPU derived 
monoscopically from each separate sensor is also shown, indicating 
how a different viewing geometry may lead to different results. 

In the absence of measurement errors, six measured angles would 
uniquely determine the six-dimensional state vector we are estimat- 
ing (assuming our template is exact). Since each measurement pro- 
vides two angles, only three measurements would be required to de- 
termine the state. 

Figure S.4 illustrates the i = 2 launch point uncertainty as a function 
of time for various random errors in measurement angle (100, 30, 
and 10 microradians) and stereo processing. As is clear in all cases, a 
priori uncertainties are reduced most rapidly by the first few 
measurements, and at a slower pace thereafter. (Measurements 
occur at times indicated by dots in the figure.) As expected on 
intuitive grounds, moreover, the LPU derived after the final 
measurement has been made scales roughly as the square of the 
random error. 

Determining the uncertainty associated with missile location at any 
point along its trajectory is another useful application of the tech- 
nique. Missile location uncertainties (MLUs)15 for two sensors pro- 

13That is, we assume full-burn trajectories throughout. Note, however, that the time 
at burnout is still uncertain, owing to missile launch time uncertainty. 
14A discussion of probabilities and uncertainty ellipses is found in Chapter Three. 
15MLU is the volume of an ellipsoid that surrounds the estimated target position and 
contains the actual target with some specified probability. 
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Figure S.3—LPUs (1=2) for Two Sensors with Random Errors 
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Figure S.4—Sensitivity of LPU (I = 2) to Random Error (Two Sensors) 
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cessed stereoscopically are shown in Figure S.5 for various random 
errors. (Here, in three dimensions £ = 2 corresponds to a 74 percent 
confidence level.) As illustrated, the uncertainty volume increases 
monotonically until the latter part of the trajectory, when the MLU 
turns over.16 (As a point of reference, a sphere of 62-km radius en- 
closes a volume of roughly 106 km3.) 

In general, decreasing the revisit time allows more measurements to 
be made and, consequently, provides more information about the 
missile trajectory. Figure S.6 illustrates the LPU for various revisit 
times, spanning the range of 2.5-40 sec. At late times, note that the 
LPU scales roughly linearly with the number of measurements. 

RANDMR737-S.S 
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Figure S.5—Sensitivity of MLU (£ = 2) to Random Error (Two Sensors) 

16By examining the trajectories with perturbed launch times, altitude, and loft, one 
finds for the example at hand that the deviation from the nominal baseline trajectory 
begins to decrease at an altitude of approximately 30,000 ft. This effect, manifested in 
the decreasing uncertainty 580 sec into the flight, is related to both the atmospheric 
degradation of the missile velocity upon reentry and our choice of a minimum energy 
trajectory to perturb about. 
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Figure S.6—Sensitivity of LPU (I = 2) to Revisit Time (Two Sensors) 

Figure S.7 shows the effect of revisit time on missile location uncer- 
tainty. As is evident from this plot, an order-of-magnitude reduction 
in revisit time generates more than an order-of-magnitude reduction 
in uncertainty volume. 

NOTIONAL RESULTS: RANDOM AND BIAS ERRORS 

At this point, we have considered a filter optimized for random errors 
alone. In many situations, however, bias errors dominate the 
measurement uncertainty, and must therefore be accounted for. 
There are two possibilities: (1) examine the effect of bias errors on 
the existing filter optimized for random errors, and (2) design a filter 
to account for the bias errors explicitly. We refer to these 
formulations as suboptimal and optimal, respectively.17 

I7It is natural to ask why one would bother using a suboptimal formulation. If 
redesigning an existing filter optimized for random errors alone is not desirable, the 
suboptimal approach allows the effect of bias on that filter to be examined, albeit as an 
afterthought. See Chapter Four for a detailed description of both approaches. 
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Figure S.7—Sensitivity of MLU (i = 2) to Revisit Time (Two Sensors) 

When treating bias suboptimally, the filter applies gains—indeed, 
sometimes large gains—to the system by considering random errors 
alone. As a result, when the effects of bias are examined, they may be 
large because they are amplified by large gains. In an optimal formu- 
lation, on the other hand, the filter knows bias errors are present and 
can adjust these gains accordingly. Nonetheless, when the bias is not 
dominant (i.e., bias error is less than or comparable to the random 
error), one would expect both approaches to yield similar results.18 

For the notional TBM launch described above, Figure S.8 illustrates 
the launch point uncertainty in the presence of bias (treated opti- 
mally). Relative to Figure S.3, larger launch point uncertainty ellipses 
are obtained with both sources of error present. 

18Keep in mind, however, that the suboptimal treatment of bias can go awry even in 
cases where the random and bias errors are comparable. If the filter applies large 
gains during the estimation sequence, results obtained treating bias suboptimally may 
differ markedly from those obtained with an optimal formulation. In all cases, though, 
the former approach would overestimate the error. 
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Figure S.9 illustrates the time evolution of the launch point uncer- 
tainty for the case of a 30-microradian random error and 100-, 30-, 
and 10-microradian bias errors, respectively. Unlike the case with 
random errors alone (Figure S.4), the LPU derived after the final 
measurement does not scale as the square of the error. Moreover, 
the importance of bias is apparent in the large difference between 
the 30- and 100-microradian cases. 

The missile location uncertainty, illustrated in Figure S.10, also 
shows qualitative differences from estimates constructed in the ab- 
sence of bias (Figure S.5). In particular, curves characterized by dif- 
ferent biases appear to coalesce late in the trajectory. 

Finally, as sensor revisit times are varied, the LPU derived after the 
final measurement is relatively insensitive to revisit time in the case 
of 30-microradian random and bias errors (Figure S.ll). In effect, a 
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point is reached in the filtering sequence where additional mea- 
surements containing unknown bias errors provide information of 
limited utility. This underscores the point that increasing the data 
collection rate will not reduce the launch point uncertainty signifi- 
cantly unless random errors dominate the measurement process. This 
is because statistics alone do not "beat down" the effects of bias. Al- 
though the insensitivity to revisit time is not apparent in the case of 
missile location uncertainty (Figure S.12), the spread in MLU values 
as revisit time is varied is reduced relative to the unbiased case 
(Figure S.7). 

On the other hand, this is not to suggest that revisit time is wholly 
unimportant in the presence of bias errors. In the event of early 
booster engine cutoff, for example, sizable uncertainties in burnout 
velocity could dominate the error analysis—with or without bias ef- 
fects. By using the general method described herein—which can ac- 
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commodate, and thus estimate, the effects of early booster engine 
cutoff—a short revisit time could improve our knowledge of the 
missile burn time, and, consequently, our state vector estimate. 

CONCLUDING REMARKS 

As theater missile defenses are fielded at the decade's end, satellite 
sensors will likely realize an important TMD battle management 
function. Waging "information warfare" will require increasingly so- 
phisticated C3I networks that can piece together the multifarious 
packets of information required to effect battlespace dominance. In 
this regard, timely transmission throughout the theater is central. 
But successful battle management requires more than connectivity 
alone: the quality of the information being transmitted is para- 
mount. Thus, our primary focus in this study has been on describing 
a technique whose application can in principle provide such 
information in the TMD operational environment. 
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Harnessed in a theater of operations, the type of information de- 
scribed here can be used to enhance the capability of active defenses, 
passive defenses, and attack operations. It is thus important for the 
Air Force to model and understand such enhancement in operational 
terms, so that personnel can understand the trade-offs available be- 
tween revisit time and high accuracy. Indeed, the use of models that 
can capture the operational effects of these technical details seems 
important for any decisions involving the acquisition of space-based 
sensor systems. As the data presented here demonstrate, this is es- 
pecially true of sensors with short revisit times and small measure- 
ment errors, at least insofar as our notional trajectory analysis is con- 
cerned. It is important to remember, however, that bias errors can 
be significant, and perhaps even dominant. Including their effects 
(optimally in certain circumstances) is therefore central to the suc- 
cess of any methodology seeking to estimate and predict ballistic 
missile trajectories. Moreover, techniques to reduce or eliminate 
such errors, where applicable, should be given due consideration. 
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ACRONYMS 

ATACMS Army Tactical Missile System 
BMD Ballistic missile defense 
C3I Command, control, communications, and intelligence 
CONOPS Concepts of operation 
DoD Department of Defense 
ERINT Extended-range interceptor 
JSTARS Joint Surveillance Target Attack Radar System 
km Kilometer 
LPU Launch point uncertainty 
urad Microradian 
MEADS Medium Extended Air Defense System 
MLU Missile location uncertainly 
MTCR Missile Technology Control Regime 
ODS Operation Desert Storm 
PAC Patriot Advanced Capability 
PGW Precision-guided weapon 
RV Reentry vehicle 
rpm Rotations per minute 
SAM Surface-to-air missile 
SDI Strategic Defense Initiative 
TBM Theater ballistic missile 
TBMD Theater ballistic missile defense 
TEL Transporter-erector-launcher 
THAAD Theater High-Altitude Area Defense 
TMD Theater missile defense 
TMD-GBR Theater missile defense ground-based radar 
WMD Weapons of mass destruction 



Chapter One 

INTRODUCTION 

At the outset of Operation Desert Storm (ODS), actively defending 
against ballistic missile attack was not a new idea. Indeed, the U.S. 
Air Force had begun examining the technical feasibility of ballistic 
missile defense (BMD) as early as 1946 with projects Wizard and 
Thumper, before many relevant technologies were mature enough to 
offer much hope for success. Recognizing the similarity between air 
defense and missile defense, the U.S. Army entered the BMD arena 
in 1955, when it began developing Nike-Zeus, a nuclear-tipped inter- 
ceptor based on the Nike-Hercules anti-aircraft system. By 1958, an 
interservice competition for the BMD mission was well under way.1 

At the same time, new technical issues arose that called the BMD 
mission into question: Could radars discriminate between reentry 
vehicles (RVs) and decoys above the atmosphere? Would the system 
become saturated if RVs arrived at close intervals? Was guidance ad- 
equate to bring the interceptor to within the kill radius? Could the 
system function properly in a nuclear environment?2   Largely be- 

1V. N. Schwartz, Past and Present: The Historical Legacy, in A. Carter and D. N. 
Schwartz (eds.), Ballistic Missile Defense, Washington, D.C.: The Brookings Institution, 
1984, pp. 331-332. 
2We note that the contextual setting of early BMD work was much different than that 
of today, and thus research efforts faced different problems. For example, the nuclear 
threat mandated low leakage levels and required systems to be functional in a nuclear 
environment. Moreover, strategic competition with the Soviet Union often made 
technical issues (e.g., decoy discrimination) hard to settle. While many of these issues 
persist, the present context renders their resolution less crucial. 
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cause of these concerns, Nike-Zeus production stagnated throughout 
the Eisenhower years.3 

By 1963, technological advances in the areas of computing, radar, 
and propulsion established the feasibility of an endoatmospheric in- 
terceptor, Nike-X, which could in principle discriminate between 
RVs and decoys by discerning differences in their interactions with 
the atmosphere. With phased-array radars, moreover, the system 
would be less vulnerable to saturation. Despite these advantages, 
Nike-X (later called Sentinel) became vulnerable to a new set of 
strategic considerations first raised by the McNamara Pentagon: the 
prospect that missile defenses could stimulate a destabilizing arms 
race with the Soviet Union. Thus, Sentinel was suspended in 1969 by 
the Nixon administration, and although its revised BMD program 
(Safeguard) was initially funded, by May 1972 the United States and 
the Soviet Union had established a treaty aimed at limiting the 
development of ballistic missile defenses to very low levels. By 
congressional directive, Safeguard was terminated in fiscal 1976.4 

On March 23, 1983, a speech by President Ronald Reagan brought 
BMD to the fore of public consciousness and set in motion an exten- 
sive research and development effort known as the Strategic Defense 
Initiative (SDI). Harnessing new technological achievements, SDI 
sought to provide a defensive umbrella shielding the United States 
from strategic attack. In the ensuing years, the conceptual and 
technical feasibility of BMD was revisited in a new context, although 
many issues remained unresolved.5 But because of cost, the 
warming of superpower relations in the late 1980s, and long- 
standing concerns that BMD could undermine a relatively stable 
strategic balance, the initial fervor associated with SDI waned by the 
decade's end. Nevertheless, thinking about missile defense was alive 
in 1990, albeit focused primarily on protecting the U.S. homeland.6 

3Ibid., pp. 332-333. 
4Ibid., pp. 334-344. 
5A broad collection of essays on this subject is found in A. Carter and D. N. Schwartz, 
1984. 
6Defending against conventionally armed Soviet missiles in Europe was one excep- 
tion. Indeed, had this not been an issue in the mid-1980s, the Patriot missile deployed 
in ODS may not have had any capability to engage TBMs. 
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Refocusing this thinking on protecting U.S. forces and allies in oper- 
ational theaters arguably began on the second day of ODS, when 
modified Scud missiles landed on Tel Aviv. Although few people 
were injured in the initial attacks, the spectre of chemical weapons 
threatened to draw Israel into the Gulf conflict, potentially under- 
mining a somewhat fragile coalition of Arab states allied with the 
United States against Iraq. It became apparent, consequently, that 
theater ballistic missile (TBM) use could exact a heavy toll in the po- 
litical arena, if not the operational one. 

As the war continued on, however, the toll of TBM strikes on tactical 
operations also became apparent. "Scud-hunting" with F-15Es, 
F-16s, A-10s, A-6Es, B-52s, and JSTARS aircraft diverted thousands of 
air sorties away from other missions. Reconnaissance aircraft 
(U-2/TR-ls and RF-4Cs) were also shifted.7 Although the defensive 
performance of Patriot missiles provided a positive psychological 
factor, it became clouded in controversy8 and contributed to the 
substantial property damage inflicted by the 88 modified Scuds 
launched during the war.9 Finally, 28 U.S. soldiers were killed in 
Dhahran, Saudi Arabia, when a single TBM struck their barracks. 

In large measure, the ODS experience galvanized U.S. interest in the- 
ater missile defense (TMD), in part because of the world's sizable 
inventory of ballistic missiles. Thirty-three nations, a number of 
which actively pursue policies contrary to U.S. interests, possess 
TBMs. (See Figure 1.1.)10 

Secretary of Defense, Conduct of the Persian Gulf War: Final Report to Congress, 
Washington, D.C.: U.S. Government Printing Office, April 1992, pp. 224-226. 
8For example, see, T. A. Postol, "Lessons of the Gulf War Experience with Patriot," 
International Security, Vol. 16, No. 3, Winter 1991/92, pp. 119-171; R. M. Stein, "Patriot 
ATBM Experience in the Gulf War," International Security, Vol. 16, No. 3, Winter 
1991/92, addendum; R. M. Stein and T. A. Postol, "Correspondence: Patriot Expe- 
rience in the Gulf War," International Security, Vol. 17, No. 1, Summer 1992, pp. 199- 
240. 
9See Secretary of Defense, 1992, pp. 226-227; S. Fetter, G. N. Lewis, and L. Gronlund, 
"Why Were Scud Casualties So Low?" Nature, 28 January 1993, pp. 293-296. 
10These missiles are in service and have maximum ranges of 200 kilometers or greater. 
The "former USSR" in Figure 1.1 includes only Azerbaijan, Belarus, Georgia, 
Kazakhstan, Russia, and Ukraine. See D. Lennox, "Ballistic Missiles Hit New Heights," 
Jane's Defence Weekly, 30 April 1994, pp. 24-28. For a broader discussion of ballistic 
missile proliferation, see Janne E. Nolan, Trappings of Power: Ballistic Missiles in the 
Third World, Washington, D.C.: The Brookings Institution, 1991. 
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Figure 1.1—Thirty-Three Nations Possess TBMs 

Perhaps more important, worldwide development efforts contribute 
to the exportable supply of TBMs, many of which may realize maxi- 
mum ranges in excess of Iraq's 650-km11 Al Hussein (see Table 1.1). 
Coupled with a concomitant spread of weapons of mass destruction 
(WMD), such TBMs could enable a strike capability that might 
threaten regional balances, U.S. allies, or even U.S. forces deployed 
overseas. The evolving security environment contains elements that 
are potentially worrisome at best; at worst, they are downright 
threatening. 

nD. Lennox, 1994. 
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Table 1.1 

Development Programs Complicate Efforts to Curtail TBM Proliferation 

Country Missile Range (km) Payload (kg) 

Iran Mushak200 200 500 
South Korea NHK/A (Hyon Mu) 300 300 
Pakistan Hatf2 300 500 
Iran CSS-7/M-11 variant 300 500 
India Prithvi SS-350 350 500 
Pakistan Hatf3 600 500 
Iran Iran 700 (Scud C) 700 500 
Libya, Iran Al Fatah 950 500 
Taiwan Tien Ma (Sky Horse) 950 500 
North Korea, Iran Labour-1 (Nodong 1) 1000 1000 
China, Iran M 18 (Tondar-68) 1000 400 
Spain Capricornio 1300 500 
North Korea, Iran Labour-2 (Nodong 2) 1500 1000 
China, Iran DF-25 1700 2000 
North Korea Taepo-Dong 1 2000 1000 
India Agni 2500 1000 
North Korea Taepo-Dong 2 3500 1000 

SOURCE: D. Lennox, "Ballistic Missiles Hit New Heights," Jane's Defence Weekly, 30 
April 1994, pp. 24-28. 

TMD DEVELOPMENT IS UNDER WAY 

Notwithstanding diplomatic efforts to curtail missile proliferation,12 

it is no surprise that the United States has undertaken an 
ambitious research and development effort in theater missile 
defense. To better understand the TMD mission, a notional "cradle 
to grave" TBM deployment sequence is illustrated in Figure 1.2, 
along with the "Core Systems" planned by the Department of 
Defense (DoD) (discussed below). 

12The Missile Technology Control Regime (MTCR) is one such effort. Created in 1987, 
the MTCR controls the transfer of technologies that could aid the unmanned delivery 
of a 500-kilogram payload over a 300-kilometer distance. For a brief description of the 
MTCR, see Ballistic Missile Defense Organization, Ballistic Missile Proliferation: An 
Emerging Threat, Arlington, Virginia: System Planning Corporation, 1992, pp. 64-65. 
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Figure 1.2—Core Systems Emphasize Target Area 

Following its manufacture/assembly in a production facility, the no- 
tional missile is transported to a prelaunch site, which may be diffi- 
cult to locate and destroy. When a deployment order is given, the 
TBM moves on a transporter-erector-launcher (TEL) to the launch 
site, where the missile is erected and fired. Following a period of 
powered flight in which rocket fuel burns with a bright signature, the 
missile proceeds on a ballistic trajectory, defined in large measure by 
its velocity and position at burnout. At this point, the missile is on its 
way to impact, and the mobile TEL may be fleeing to a postlaunch 
"hide site" or resupply depot. 

It is convenient to differentiate between opportunities to counter 
TBMs in the target area and the forward area (Figure 1.2). Target 
area defenses either attempt to intercept the incoming missile13 near 

13As the situation dictates, reentry vehicles may be the appropriate targets, rather than 
the missiles themselves. 
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the point of impact (the Patriot missile in the Gulf War is a familiar 
example of such a system) or rely on passive measures in the target 
zone (seeking shelter, donning protective clothing, etc.). The TMD 
Core Systems currently planned by DoD emphasize interception for 
target area defense, with three separate initiatives: PAC-3 (with 
extended-range interceptor, ERINT),14 Navy Area TBMD,15 and 
Theater High-Altitude Area Defense (THAAD) (with TMD-GBR).16 

These systems are scheduled for initial deployment in 1998, 1999, 
and 2001, respectively, at a total cost of about $25 billion.17 

Forward area defenses, on the other hand, would target the missile 
while it is boosting or ascending, thereby providing capability against 
TBMs with fractionating payloads.18 Production facilities, prelaunch 
sites, resupply depots, and the TEL itself could also be targeted. 
Attack operations of this sort—and, indeed, forward area defenses in 
general—would likely employ aircraft, owing to the need to reach 
into the forward area.19   Although forward area development 

14Patriot Advanced CapabiIity-3 (with extended-range interceptor) is, roughly 
speaking, a new and improved Patriot missile. Existing Patriot launchers and radars 
will be modified. 
15Navy Area TBMD (formerly known as Navy Lower-Tier) will use Standard Block IVA 
missiles deployed on roughly 50 AEGIS cruisers and destroyers. Ship-based radars will 
be modified to accommodate the TMD mission. 
16THAAD (with TMD ground-based radar) is a ground-based, upper-tier defense 
system requiring new missiles and new radars for target acquisition and fire control. 
17See Congressional Budget Office, The Future of Theater Missile Defense, Washington, 
D.C.: U.S. Government Printing Office, June 1994, p. xv. The above cost includes 
estimates of funds appropriated before 1995. 
18Boost-phase interceptors are one of three Advanced-Capability TMD Systems 
currently being examined by DoD—Navy Theater-Wide TBMD (formerly known as 
Navy Upper-Tier) and the Medium Extended Air Defense System [MEADS] (formerly 
known as Corps SAM) are the others. Because of budgetary constraints, it is expected 
that only one of these will eventually proceed to development. See Congressional 
Budget Office, 1994, p. xiv. 
19Special Operations Forces (SOF) deployed in the forward area could support attack 
operations by relaying information about TBM launches to strike aircraft. During 
ODS, SOF groups in fact provided vital information about Iraqi missiles. See Secretary 
of Defense, 1992, p. 226; and D. C. Waller, The Commandos, New York: Simon & 
Schuster, 1994, pp. 335-351. 
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programs have not received the highest priority within DoD, 
promising concepts of operation (CONOPS) have been identified.20 

SATELLITE SENSORS SUPPORT TMD BATTLE 
MANAGEMENT 

Active defenses, passive defenses, and attack operations as described 
above form three of the four "pillars" of the U.S. theater defense pro- 
gram. The fourth—command, control, communications, and intelli- 
gence (C3I)—is in a sense the foundation supporting these pillars, 
rather than a pillar itself. How might satellite sensors contribute to 
C3I in the TMD environment? 

Consider the notional missile launch depicted in Figure 1.3. A satel- 
lite sensor in position to view a boosting TBM21 can in principle 
provide useful information to a variety of theater defense platforms. 
By gathering information on the TBM trajectory, for example, a "for- 
ward track" of the missile can be derived, from which the time and 
location of missile impact can be estimated. If relayed to the target 
area in a timely manner, appropriate passive defensive measures 
may be employed. In addition, the forward track can include esti- 
mates of the missile position as a function of time along the trajec- 
tory. Such estimates could be used to cue search radars of active 
defense systems, and perhaps provide fire-control quality "launch 
baskets" for TBM interceptors.22 

Similarly, a TBM "backtrack" to the launch point provided by satel- 
lite sensors could support attack operations with aircraft or ground- 
launched munitions. During the Gulf War, Scud launchers could be 
moved within minutes of missile firing, and after 15 minutes, could 

20See D. Vaughan et al., Evaluation of Operational Concepts for Countering Theater 
Ballistic Missiles, Santa Monica, Calif.: RAND, WP-108,1994. 
21To simplify our discussion, we use the term "satellite sensor" to represent a 
spaceborne platform capable of detecting missiles during the boost-phase only. 
Sensors capable of detecting TBMs after booster burnout (e.g., Brilliant Eyes-type 
systems) are not considered here. 
22In the case of boost-phase/ascent-phase intercept, time constraints may limit the 
utility of satellite-based information. 
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Figure 1.3—Satellite Sensors Support Both Forward and 
Target Area Defenses 

be anywhere within nine miles of the launch point, underscoring the 
importance of timely response.23 By detecting and tracking the 
TBM during boost-phase,24 however, the spaceborne systems con- 
sidered here have the potential to supply information for such a re- 
sponse, and to do so nearly globally on an essentially continuous 
coverage basis. 

ORGANIZATION OF THE REPORT 

This report describes the operational implications of an established 
analytical procedure which, applied to notional satellite measure- 
ments, supplies information to a battle management function central 

23Secretary of Defense, 1992, p. 224. 
24Depending on the type of missile, boost-phases typically last between 30 and 120 
sec. See Congressional Budget Office, 1994, p. 5. 
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to the theater missile defense mission. Chapter Two describes the 
theoretical underpinnings of the approach, known as linear filtering. 
The equations of a Kaiman filter optimized for random measurement 
errors are derived for both linear systems and nonlinear systems in 
the linear approximation. The latter are applied to a notional TBM 
launch against Israel in Chapter Three, with an emphasis on analyz- 
ing launch point uncertainty and missile location uncertainty. 
Chapter Four discusses the effect of measurement bias on this filter, 
on a filter optimized for both random and bias errors, and on the 
trajectory analysis in both cases. Finally, Chapter Five offers some 
concluding remarks. 



         Chapter Two 

THEORETICAL UNDERPINNINGS 

This chapter briefly describes the formalism of a Kaiman filter opti- 
mized for random errors. Equations are derived for both linear sys- 
tems and nonlinear systems in the linear approximation. 

LINEAR ESTIMATION AND PREDICTION 

Consider a physical system whose characteristics may be fully de- 
termined at any time by the state of the system, x.1 For a dynamical 
system, such a vector might contain the position, orientation, time, 
velocity, acceleration, and/or any other parameters relevant to de- 
scribing its state. If measurements on such a system (in the absence 
of errors) yield observations that are proportional to the state vector 
(in the matrix sense), the system will obey the linear relation 

z = Hx + v, (2.1) 

where 

z = p-dimensional measurement vector, 

x = n-dimensional state vector of system, 

H = a known (p x n)-dimensional matrix, 

v = measurement errors in z (p-dimensional). (2.2) 

xOur notation is similar to that of A. E. Bryson and Y.-C. Ho, Applied Optimal Control, 
New York: Hemisphere Publishing Corporation, 1975. 

11 



12    Estimation and Prediction of Ballistic Missile Trajectories 

We assume the measurement errors are random, with vanishing ex- 
pected value: 

E(v) = 0. (2.3) 

Denote the estimate of the state before measurement by x, and de- 
fine the error covariance of the measurement and error covariance of 
the state before measurement by 

R=E|wT 

and 

M = E (x-xHx-x)1 

(2.4) 

(2.5) 

respectively. Assuming x and v to be independent vectors obeying 
gaussian statistics, the probability density p(x, v) is proportional to 
exp(-J), where J is the quadratic form 

<=r (x - x)T MT1 (x - x) + (z - Hx)T R"1 (z - Hx) 

One can show that J is minimized by the vector 

x = x + PHTR_1(z-Hx), 

with P the error covariance of the state after measurement: 

P= E[(X-X)(X-X)T]. 

(2.6) 

(2.7) 

(2.8) 

As a result, x = x and v = v = z - Hie represent the "maximum 
likelihood estimate" of the state vector, in that they maximize p(x, v) 
given the measurement z.2 In other words, x is the most likely state 
vector resulting in the measurement z, given the statistical properties 
ofxandv.3 

2Ibid., p. 357. 
3See A. Gelb (ed.), Applied Optimal Estimation, Reading, Massachusetts: The Analytic 
Sciences Corporation, 1974, p. 103. 
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It is a straightforward exercise to verify that P satisfies 

P = |M-1 + HTR-1H 

= M - MHT (HMHT + R)"
1
 HM. (2.9) 

If the state vector is of greater dimension than the measurement 
vector (i.e., if n > p), P is more easily obtained from the latter of the 
above equations. Note that this equation also predicts that mea- 
surements decrease the uncertainty in our knowledge of the state 
(i.e., xTPx < xTMx for all n-dimensional vectors x), since the 
quantity subtracted from M above is nonnegative definite. 

As alluded to above, the temporal evolution of this system may be 
accounted for by directly incorporating the time variable into the 
state vector. (This is a convenient choice when measurements are 
made continuously, as in radar tracking.) Alternatively, a discrete set 
of measurements occurring at different times may be accounted for 
by explicitly carrying a time index on the matrices and vectors com- 
posing the linear system. Let 

zs =Hixi+vi ,i = l,...,N, (2.10) 

where we assume 

E(Vi) = 0, (2.11) 

and the index i is an explicit time label for the sequence of mea- 
surements 1,... ,N. We further assume that measurements at 
different times are uncorrelated; that is, 

E(viVj
T) = RJSJ, , (2.12) 

where 8^ is the Kronecker delta.4 Generalizing Eq. (2.7), we write 

iq =xi+PiHi
TRi"

1(zi-Hixi), (2.13) 

4 8jj = 0 for i * ); 6;; = 1 for i = j. 
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where sequential estimates are linked via 

xi+1 = X; , (Xj is given) (2.14) 

Pi=(Mi-
1 + Hi

TRf1Hi) 

= Mi-MiHi
TfHiMiHi

T + Ril   HjM; , (2.15) 

and 

Mi+1 = Pi, (Mj is given). (2.16) 

The above set of equations constitutes a particular form of a Kaiman 
filter.5 Equations (2.13)-(2.16) may be used to refine an initial esti- 
mate of the state (Xj) and its corresponding error covariance (MJ 
through the use of information obtained through the measurement 
process. The estimation sequence is represented in Table 2.1. Note 
that the matrices H; and R; must be specified to run the filter. 

As formulated, the filter is optimized for random errors, which are 
uncorrelated from measurement to measurement. In Chapter Four, 
we will investigate the effect of "bias" errors, which are correlated. 

LINEAR APPROXIMATION TO NONLINEAR SYSTEMS 

Few physical systems are linear in the sense of Eq. (2.1); most are 
described by the nonlinear equation 

z = h(x) + v, (2.17) 

5R. E. Kaiman, "A New Approach to Linear Filtering and Prediction," Trans. ASME, Vol. 
82D, 1960, p. 35. More generally, the state vector has a known transition matrix (<I>), a 
known process noise distribution matrix (T), and is affected by a random process 
noise vector (w): 

Xi + l=*ixi+riwi- 
Since there are no disturbances to the state in our formulation (i.e., no process noise), 
we may choose our state vector to comprise initial value data, in which case O 
becomes the identity matrix. With this choice, the dynamics of the physical system 
are manifested in the measurement process and captured mathematically in the 
definition of the H-matrix. See A. E. Bryson and Y.-C. Ho, 1975, pp. 359-361. 
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Table 2.1 

Estimation Sequence 

Before Measurement After Measurement 

xlfMx XJ.PJ 

x2=x1,M2 = P1 x2,P2 

x3 = x2,M3 = P2 x3,P3 

where h is a differentiable function of x. In the event that sufficient a 
priori knowledge of the state vector is obtainable, Eq. (2.17) can be 
expanded in a Taylor series about an initial estimate of the state. 
Denote this estimate by x, and the measurement to which it corre- 
sponds by z. Expanding about this estimate to linear order, one ob- 
tains 

--    3z 
z-z = — 

9x 
(x-x) + v = H(x-x) + v. (2.18) 

As a result, the developments of the preceding section can be applied 
if we simply shift the state and measurement vectors by appropriate 
constant vectors. Clearly, the matrices M, P, and R are unaffected 
by this redefinition [see Eqs. (2.4), (2.5), and (2.8)]. The estimate of 
the state, on the other hand, will be given by 

x = x + PHTR-1(z-z-H(x-x)), (2.19) 

which reduces to 

x = x + PHTR"1(z-z) (2.20) 

if we identify x = x. 

In the linear approximation, then, it is easy to verify that the time 
evolution of the filter is governed by 
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Xj = X; + PjH^Ri^CZi - z, - HJCXJ - x)), (2.21) 

where 

H, s ^i.      , (2.22) 1     3x 
x=x 

and sequential estimates are linked via 

xj+1 = Xj, (xx s x is given) (2.23) 

\-i 
P^^ + HiVH^ 

= M, - MjHjfHjMiHi1" + Rj)   H;Mj 
(2.24) 

and 

Mi+i=Pj, (Mi is given).6 (2.25) 

Finally, rewriting Eq. (2.18) in the sequential form 

Zj-Z; =Hj(x-x) + vi( (2.26) 

where Z; is the measurement vector at time index i corresponding to 
the expansion vector x, and defining 

ej = Xj - x , (2.27) 

Eq. (2.21) can be rewritten as 

e, = (I-KiHi)ei_1 + KjVj, (2.28) 

where the Kaiman gain matrix is defined as 

K, = PjH^Ri-1 . (2.29) 

6Although not implemented in the present work, it is also possible to use the state 
vector estimate after measurement (x) to update the expansion point (x), iterating 
until convergence is achieved. 
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As a result, since the covariance at the ith stage is given by 

T" 
PjSE e^ (2.30) 

one can show that the error in the state vector (e;) and the estimate 
X; are uncorrelated. In Chapter Three, we will apply this formulation 
to the problem of estimating and predicting theater ballistic missile 
trajectories. 



Chapter Three 

ESTIMATION AND PREDICTION OF BALLISTIC 
MISSILE TRAJECTORIES 

In this chapter, we apply the foregoing discussion to the case of bal- 
listic missile trajectories. We begin with a description of the missile- 
sensor engagement. 

GEOMETRY OF MISSILE-SENSOR ENGAGEMENT 

As depicted in Figure 3.1, our notional sensor spins clockwise (i.e., in 
the right-handed sense) about an axis originating at the center of the 
earth and extending outward through the equator. Such a geometry 
may be used to describe satellite viewing from geosynchronous or- 
bits. 

To model the measurement process, it is useful to erect a coordinate 
system moving with the notional sensor. Consider first a spherical 
coordinate system centered on the earth, as illustrated in Figure 3.2. 
In these coordinates, the sensor location is described by a position 
vector with components (r, 0, <&). As usual, the spherical system is 
related to ordinary Cartesian coordinates through the transformation 

x = r sin 0 cos 4> 
y = rsin0sin<& (3.1) 
z = r cos 0 . 

19 
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RANDMfl737-3.7 

Figure 3.1—Notional Sensor in Geosynchronous Orbit 

RANDMR737-3.2 

Figure 3.2—Earth-Centered Coordinates 
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To transform this system into one rotating with the sensor, we make 
a sequence of coordinate transformations. First, translate the origin 
of the Cartesian system a vector amount r. Next, rotate the (x, y, z) 
system an amount O about the z-axis (see Figure 3.3) using the ma- 
trix relation 

^ 

\<-j 

f cos *    sin <b   0^ 
- sin <£>   cos <&   0 

0 0       1 

V 
(3.2) 

Now orient the x'-axis with the radial direction by rotating an 
amount 0 - nil about the y' -axis: 

'x'A sin 0    0   cos 0 
0        10 

- cos 0   0   sin 0 
y" 

Az'j 

(3.3) 

RANDMH737-3.3 
z = z 

Figure 3.3—Rotated Coordinates 
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Next, tilt downward an amount r, again about the y' - or y" -axes: 

(3.4) 
cosT J^z"^ 

The result is depicted in Figure 3.4. 
„/» _ v«        RANDMR737-3.4 

rx'")    fcosT   0   -sinrYx""j 
y" 

z'" 
0       1        0 

sin T   0    cos r 

Figure 3.4—Tilted Coordinates 

As the sensor spins, a vector in a coordinate system whose origin lies 
at the sensor position rotates counterclockwise (i.e., in the left- 
handed sense) with respect to the spin axis (see Figure 3.5). In terms 
of the coordinates above, the rotating vector p obeys1 

p = r"' cos cot + hfii • F' ')(l - cos cot) + (r"' x n) sin cot ,     (3.5) 

where n defines the axis of (counterclockwise) rotation. 

1H. Goldstein, Classical Mechanics, Reading, Massachusetts: Addison-Wesley, 1980, p. 
164. Remember that a clockwise rotation of the coordinate system appears as a 
counterclockwise rotation of the vector. 
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As a result, applying Eqs. (3.1)-(3.5), we obtain the following relations 
for the position of an object viewed in a coordinate system that ro- 
tates as in Figure 3.5: 

X = x"'cosrot + (x"'cosr + z"'sinr)cosr(l-coscot) 
-y'" sin T sin cot 

Y = y"'coscot + (x'"sinr-z"'cosr)sincot 
Z = z"'coscot + (x"'cosr + z"'sinrjsinr(l-coscot 

+y''' cos r sin cot, 

(3.6) 

where 

and 

x"' = x" cos T - z" sin T 
y' z 

lit       „II 

' •       S ' x" sin r + z" cos r 

x"= xsin0cos<E> + ysin0sin<I> + zcos0 
y" = -x sin <& + y cos <E> 
z" = -x cos 0 cos <& - y cos © sin 0 + z sin 0 

(3.7) 

(3.8) 

RANDMR737-3.S 

r'" = (x'",y'",z'") 

Figure 3.5—Spinning Coordinates 
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Thus, in addition to the positions of the sensor and missile, the rota- 
tion rate and tilt of the sensor need to be specified to adequately de- 
scribe the engagement in this formalism. 

With Equation (3.6) at hand, define the angles 

Z 
X 

(3.9) 

and 

och = tan -i 

X 
(3.10) 

representing "vertical" and "horizontal" angles in the sensor's frame, 
respectively. [The boresight of the sensor points toward the earth 
along a ray through the origin of the Y-Z coordinate plane (i.e., 
through ocv = ah =0)]. When an object passes through the sensor's 
field of view, ah = 0. We may therefore use the rotation phase angle 
Q. = cot to define another angle representing the rotational position of 
the sensor when the object passes by.2 Setting Eq. (3.10) to zero, and 
using Eq. (3.6), we obtain 

Q. = tan -l 

z"' cos T - x"' sin T 
(3.11) 

(Loosely speaking, Q represents the angular position of a hand on a 
clock, where the face represents the disk of the earth as seen from the 
position of the sensor.) In terms of the filter analysis, the two sets of 
angles (ocv,ah and av,Cl) are equivalent.3 Unless otherwise stated, 
we will assume 

2By defining a measurement to occur when aj, = 0, the sensor is more properly 
described as a vertical slit with no horizontal extent. Note that the slit is aligned 
toward the north when t = 0. 
3That is, measurement vectors taken as 

SM:; 
-i yield the same results. Note, however, that by mathematical convention the tan' 

function assumes values between -90 and +90 degrees, and so cannot represent angles 
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(„ \ 

V-2J 
(3.12) 

It is convenient to parameterize the error in Q. in terms of the error 
in och. Differentiating Eq. (3.10) (holding the missile position 
constant), setting ah = 0, and defining the quantity 

D = cos £2 + cosr + —-sinT 
x 

cos r(l - cos Q 
(3.13) 

V -^7^sinrsin£2 , 

we find 

5ah D 
- sin Q. - sin r ——■ cos r 

x 
cos £2 

With a little algebra, we may rewrite the above as 

8ah = - 8Q(sin r + tan av cos r) 

(3.14) 

(3.15) 

FILTER METHODOLOGY 

To calculate the H-matrix, we define a template for a given missile 
from its range-altitude data, which are obtained by modeling the 
missile's flight in the atmosphere of a spherical, nonrotating earth.4 

This trajectory is used as a baseline from which perturbations—and 
ultimately, the H-matrix elements—are generated. In the field, sen- 
sor measurements would be obtained from the actual missile under 
observation; here, to simply estimate the errors one might expect 
using the filter technique (as opposed to estimating the state vector), 

in the second and third quadrants. In applying Eq. (3.10), this is not a problem for 
most practical geometries because X is usually negative. Such is not the case for Eq. 
(3.11), so that special care must be taken in applying this equation. One solution is to 
use Eq. (3.10) to determine when a measurement occurs (i.e., when % = 0), and then 
substitute the relevant coordinates [using Eq. (3.6)] into Eq. (3.11) to find Q.. 
4For intermediate- and shorter-range missiles, neglecting rotational effects is usually 
justifiable. 
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we simulate this process by taking the measurements on the tem- 
plate trajectory. 

The (constant) state vector is defined by 

(„ \ 

x = 

VxeJ 

(3.16) 

where 

*3 

X4 

x5 

= launch latitude, 

= launch longitude, 

= launch heading, 

= launch time, 

= launch altitude, 

xg   =   loft.angle characterizing missile pitch-over.5 

From Eq. (2.18), we can obtain the H-matrix by perturbing the state 
vector elements and examining the changes on the measurement 
vector z. In this manner, for the case of a two-dimensional measure- 
ment vector [i.e., with components (zx, z2)], the elements of H are 
given by 

H = 

9zj 3zj dzl 3zj 3zj 3zj 
9xj dx2 3x, 3x4 3x5 3xfi 

3z2 3z2 3z2 3z2 3z2 3z2 

3x,    3x?    3x,    dxd    3xc    3x, 6 7 

(3.17) 

5this parameterizes a family of templates based on early pitch-over followed by zero 
angle of attack for the remainder of the flight trajectory. More generally, we could 
have assumed any family of flight trajectory templates for which variation of the loft 
angle is determined by a one-parameter family of steering functions applied early in 
the boost-phase. 
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where partial derivatives with respect to one state vector element are 
calculated holding other elements constant and evaluated at the ini- 
tial guess x = x .6 Variations in launch position (xx, x2) and heading 
(x3) are straightforward, simply changing the geometric relationship 
between missile and sensor. Variations in launch time (x4), on the 
other hand, move the position of the missile forward or backward in 
its time history. If one were to imagine a sequence of beads on a wire 
representing points along the trajectory (see Figure 3.6), such varia- 
tions could be described by sliding the beads backward or forward 
along the wire. (The "beads" shown in Figure 3.6 represent trajectory 
points plotted every five seconds.) Varying launch altitude (x5) 
causes more than a vertical translation of the trajectory, since drag 
depends on the atmospheric density, an approximately exponential 
function of altitude. Finally, to allow for planar variations in the tra- 
jectory template, we vary the loft angle (x6) during the pitch-over 

RANDMB737-3.6 

0> 
■a 
3 

25 50 

Range (km) 

75 

Figure 3.6—Boost-Phase of Notional Missile 

6The complexity of this problem demands that these derivatives be calculated 
numerically. 
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phase of flight. Loft angle is identical to the angle of attack, defined 
with respect to the instantaneous velocity vector of the missile. At 
launch and prior to pitch-over, the missile velocity is in the vertical 
direction (defined locally). As x6 increases, roughly speaking, the 
vertical speed of the missile is converted to horizontal speed, so that 
small loft angles result in lofted trajectories and large loft angles 
cause trajectories to depress. 

In what follows, we consider the estimation/prediction problem for 
the case of a notional TBM whose trajectory is depicted in Figure 3.7. 
As the figure illustrates, this missile has a boost-phase of 100-sec du- 
ration and a total range of 1200 km. For an initial guess, we assume a 
launch in Iran (at 34.01° latitude, 47.40° longitude) with a 263° 
heading,7 impacting Tel Aviv at 32.05° latitude, 34.77° longitude. The 
relevant geometry is illustrated in Figure 3.8, where the satellites 

CD 
"O 
3 

RMW3MR737-3.7 

JUU 

200 

100 - 

' Burnout (100 sec) 

0 i        i        1      i      i      i      1      i 1           1           1           1           1      _1 A 

300 600 

Range (km) 

900 1200 

Figure 3.7—Notional 100-sec-Burn Missile Trajectory 

7n° 0° represents due north and 90°, due east. 
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RKR0MR737-3.8 

Missile launch: 
Iran to Israel 

Figure 3.8—Geometry of TBM Trajectory and Sensors 

are positioned in geosynchronous orbit at 0° latitude, and 15° and 
75° east longitude, respectively.8 (The equations describing 
trajectories on a spherical earth may be found in the Appendix.) 

As depicted in Figure 3.9, the two satellites independently sample the 
missile boost-phase, each measuring two angles (z,,z2) at 20-sec 
intervals (the assumed revisit time9). Since the notional TBM takes 
42 sec to reach an altitude of 10 km, a sensor unable to see through a 
cloud layer at this altitude would, roughly speaking, be denied two 

8Geosynchronous orbit about a spherical earth occurs at an altitude of roughly 35,800 
km as measured from the equatorial surface (equivalent to a radius vector about 
42,200 km in extent as measured from the center of the earth). For satellites at 0° 
latitude, the disk of the earth subtends a half-angle of roughly 8.8°, so that a 4.4° tilt 
angle with a 4.4° field of view covers the disk completely as the sensor revolves about 
its spin axis. 
9In a sensitivity excursion, we later examine the effects on the trajectory analysis of 
varying the revisit time. 



30    Estimation and Prediction of Ballistic Missile Trajectories 

RANDMB737-3.9 
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•fr Measurements by 
sensor at 15' E 
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Figure 3.9—Boost-Phase Measurement Sequence 

measurements. For simplicity, we assume clouds do not present 
such a problem, and ignore effects of early booster engine cutoff.10 

First, consider the satellite positioned at 75° longitude. The H-matrix 
corresponding to each measurement may be calculated numerically, 
utilizing Eqs. (3.1)-(3.10) and (3.12). For the example at hand, we 
approximate derivatives by differences using a step 

5x = 

'o.oi^ 
0.01 
0.01 

1 
0.01 

v0.01 

(3.18) 

10That is, we assume full-bum trajectories throughout. Note, however, that the time 
at burnout is still uncertain, owing to an uncertainty in the missile launch time. 
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with angles measured in degrees, time in seconds, and altitude in 
kilometers. By varying the state vector elements independently by 
the amounts illustrated above, the change in the measured angles 
may be calculated and derivatives determined. Five measurements 
occur during boost-phase in this example, at roughly 18, 38, 58, 78, 
and 98 sec after launch. (The 20-sec periodicity reflects the revisit 
time of the sensor. The motion of the missile is negligible here be- 
cause it is viewed from geosynchronous altitude.) Note that at 18 
sec, the H -matrix reads 

H ^.OxlO-2    -6.2X10"2    5.4xl0~6    -2.7XKT4    1.2xl(T3     2.3xl0"5 

1.0 8.9X10-1     5.2X10-5     7.0X10-4     3.4xl0~5    -8.0x10"^' 

(3.19) 

whereas just prior to burnout (98 sec), it is given by 

8.0xl0~2    -6.3xl0"2    9.0xl0-4    -3.4xl0~3    4.3xl0-3    -4.1xl0-3 

1.0 8.7X10-1     8.9xl0-3     2.4X10-2     8.4xl0"3    -9.7xl0"2 

(3.20) 

This illustrates that the H -matrix is time-dependent. 

One would not expect matrix elements corresponding to changes in 
launch position (i.e., the first two columns of H) to vary appreciably 
during the missile flight, since, in effect, these changes amount to 
sliding the "wire" trajectory as a whole over the earth's surface. We 
may estimate these using order-of-magnitude approximations to the 
missile-sensor engagement: 

RGEO ■ Aav ~ REARTH ' All => f^L ; ^L _  REARTH  _ JQ-1 ^    (3 2l) 
RGEO " Accv ~ DEARTH ' ALj       3xj   3x2       RGEO 

and 

i REARTH - Aß ~ REARTH ' ^ I => i^2_ ( ^2_ _ j > (3 22) 
1REARTH ■ Aß ~ REARTH " ALJ dxx ' 3x2 

with 1 the latitude (Xj), L the longitude (x2), REARTH 
me earth's 

radius, and RGE0 the geosynchronous altitude. [Recall that (zx, z2) = 
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(av, Q).] Similar scaling arguments may be constructed for other 
matrix elements, although these exhibit a more complicated geomet- 
ric and temporal dependence.11 

Once H is calculated, the covariance matrix of random errors R is 
constructed. Because we choose to define 8Q in terms of 5ah [see 
Eq. (3.15)], R will exhibit a slight time-dependence, as the following 
illustrates: For a 30-microradian random error, the R-matrix reads 

R foxier6        0     )     at 18 sec, whereas    (3.23) 
0        2.3X10-4 j 

R (3.0 x 1(T6 0 
0 2.2 x 1(T4 at 98 sec. (3.24) 

By specifying an initial guess for P [i.e., Mj—see Eq. (2.25)], we may 
run the filter algorithm. We next describe some notional results. 

NOTIONAL RESULTS 

Launch Point Uncertainty (LPU) 

Determining the uncertainty associated with missile launch location 
is a useful example of the Kaiman filter technique's utility. Describe 
the launch position with the vector 

w = 
Wj 

vw2y 
(3.25) 

where (w^Wj) are launch latitude and longitude, respectively. 
Writing the above as 

w = Fx, (3.26) 

uIn particular, because the prevalent effects of loft angle variations are manifested 
later in the trajectory, the matrix elements corresponding to these variations vary by 
more than two orders of magnitude over the course of the boost-phase. Thus, 
measurements occurring early in the boost-phase are much less sensitive to these 
types of variations than measurements occurring near missile burnout. 
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where 

it is easy to see that 

F = 10   0   0   0   0 
0   1   0   0   0   0)' 

W = E trlT (W - w) (w - w) FPFT = Pll     Pl2 

V*2i 

(3.27) 

(3.28) 
r22j 

Launch point uncertainty is thus determined from a 2 x 2 submatrix 
composing P. 

The probability that w lies within the ellipse 

(w-w)TW_1(w-w) = ^2 

is given by12 

„2 

Jexp 
f       o\ 

r 
rdr = 1 - exp 

(3.29) 

(3.30) 

or 0.393,0.865, and 0.989 for ^ = 1,2, and 3, respectively. 

Consider the notional trajectory discussed previously (Figure 3.7). As 
an initial estimate of the covariance, we use 

M 

fl 0     0 0 0   0 
0 10 0 0   0 
0 0   400 0 0   0 
0 0     0 400 0   0 
0 0     0 0 10 
0 0     0 0 0   1 

(3.31) 

corresponding (at the one-sigma level) to a 1° uncertainty in launch 
latitude and longitude, 20° uncertainty in launch heading, 20-sec un- 
certainty in launch time, 1-km uncertainty in launch altitude, and a 
1° uncertainty in loft angle. For a single satellite positioned at 0° lati- 
tude, 75° longitude, Figure 3.10 illustrates the t = 2 launch point un- 

12A. E. Bryson and Y.-C. Ho, 1975, pp. 310-311. 
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Figure 3.10—Sensitivity of LPU (i = 2) to Random Error (One Sensor) 

certainty as a function of time for various random errors (100,30, and 
10 microradians, respectively).13 

In the absence of measurement errors, six angles would uniquely de- 
termine the six-dimensional state vector we are estimating 
(assuming our template is exact). Since each measurement provides 
two angles, only three measurements would be required to specify 
the state. Consequently, as is clear in all cases above, a priori uncer- 
tainties are reduced most rapidly by the first few measurement and 
at a slower pace thereafter. 

Next consider a second satellite positioned at 0° latitude, 15° longi- 
tude. Processing its measurements sequentially with those of the 
first satellites (i.e., stereo processing) may significantly reduce the 
launch point uncertainty. Figure 3.11 depicts the LPU for this case, 
derived after the last measurement has been made. The LPU calcu- 
lated monoscopically from each separate sensor is also shown, indi- 

13We assume 8<Xh = 5av for simplicity [see Eqs. (3.9)-(3.15)]. 



Estimation and Prediction of Ballistic Missile Trajectories    35 

RANDMfi737-3.)J 

5 km 

18.6 sq km 
(15- E) 

5 km 

14.3 sq km 
(75- E) 

4.8 sq km 
(stereo) 

30-microradian random error 

Figure 3.11—LPUs (t = 2) for Two Sensors with Random Errors 

eating how a different viewing geometry may lead to different re- 
sults.14 In all cases, a 30-microradian random error is assumed. 

Figure 3.12 illustrates the £ =2 launch point uncertainty as a func- 
tion of time for various random errors (100, 30, and 10 microradians) 
in the case of stereo processing. (The second sensor provides mea- 
surements at roughly 2, 22, 42, 62, and 82 sec.) As expected on intu- 
itive grounds, the LPU derived after the final measurement has been 
made scales roughly as the square of the random error. 

Finally, consider a symmetric example, where the same missile is 
launched from 35° latitude, 45° longitude heading due north. If the 
sensors rotate in the opposite direction relative to each other, we 
would expect the symmetry of the problem to manifest itself in the 
results. As Figure 3.13 illustrates, this is indeed the case. 

14As shown later, a perfectly symmetric example results in identical LPU values 
calculated from each sensor. 
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Figure 3.12—Sensitivity of LPU (I = 2) to Random Error (Two Sensors) 
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Figure 3.13—LPUs (t = 2) for a Symmetric Example 
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Missile Location Uncertainty (MLU) 

Determining the uncertainty associated with missile location at any 
point along its trajectory is another useful application of the tech- 
nique.15 Describe the instantaneous missile position at time t by the 
vector 

y(t) y2M 
y3(t)j 

(3.32) 

where the elements (y1( y2, y3) are referenced to a Cartesian coordi- 
nate system centered at the center of the earth. (We may choose the 
y3-direction to intersect the poles, and the yi-y3 plane to intersect 
Greenwich.) Although y(t) is a nonlinear function of the state vector, 
we may expand to linear order about an initial estimate of the state 
[see Chapter Two, Eqs. (2.17)-(2.22)]. In similar fashion, we find 

-     3y 
(x-x)sG(x-x). 

The covariance of y(t) will therefore be given by 

0 = E[(y-y)(y-y)T] = GPGT, 

(3.33) 

(3.34) 

once the G-matrix is determined.  (This may be accomplished nu- 
merically, using a procedure similar to that used in determining H.) 

The probability that y lies within the ellipsoid 

(y-y)T0-1(y-y) = ^2 

is given by16 

Jexp r2dr = erf 
fl 

- L\— exp 

(3.35) 

(3.36) 

or0.199,0.739,and0.971 for 1 = 1,2, and3,respectively. 

15The mathematical framework developed for analyzing MLU could be applied more 
generally to other uncertainties—for example, missile velocity (in three dimensions), 
impact point (in two dimensions). 
16A. E. Bryson and Y.-C. Ho, 1975. 
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Figure 3.14 depicts the missile location uncertainty as a function of 
time along the trajectory in the case of 100-, 30-, and 10-microradian 
random errors, respectively. As illustrated, the uncertainty volume 
increases monotonically until the latter part of the trajectory, when 
the MLU turns over.17 (As a point of reference, a sphere of 62-km 
radius encloses a volume of roughly 106 km3.) Results for two sensors 
processed stereoscopically are shown in Figure 3.15. 

Revisit Time Sensitivities 

In general, decreasing the revisit time allows more measurements to 
be made and, consequently, more information to be obtained about 

RANDMW37-3.M 
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Figure 3.14—Sensitivity of MLU (£ = 2) to Random Error (One Sensor) 

17By examining the trajectories with perturbed launch times, altitude, and loft, one 
finds for the example at hand that the deviation from the nominal baseline trajectory 
begins to decrease at a reentry altitude of approximately 30,000 ft. This effect, 
manifested in the decreasing uncertainty 580 sec into the flight, is related to both the 
atmospheric degradation of the missile velocity upon reentry and our choosing a 
minimum-energy trajectory to perturb about. 
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Figure 3.15—Sensitivity of MLU (I = 2) to Random Error (Two Sensors) 

the missile trajectory. Figure 3.16 illustrates the LPU for various re- 
visit times, spanning the range of 2.5-40 sec. At late times, note that 
the LPU scales roughly linearly with the number of measurements. 

Finally, Figure 3.17 shows the effect of revisit time on missile location 
uncertainty. As is evident from this plot, an order-of-magnitude re- 
duction in revisit time generates more than an order-of-magnitude 
reduction in uncertainty volume. 
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Figure 3.16—Sensitivity of LPU {£ = 2) to Revisit Time (Two Sensors) 

RANDMfl737-3.T7 

ü     1E+04 

100 200 300 400 

Time (sec) 

500 

Seconds 

600 

Figure 3.17—Sensitivity of MLU (t = 2) to Revisit Time (Two Sensors) 



Chapter Four 

THE EFFECT OF BIAS ERRORS 

When correlation times1 are shorter than the timescales of the mea- 
surement sequence, we may approximate the errors as uncorrelated, 
which we have done thus far in our treatment of a Kaiman filter op- 
timized for random errors. In many situations, however, bias er- 
rors—which are correlated from measurement to measurement— 
dominate the uncertainty. In such cases, one must explicitly account 
for their effects on the uncertainty analysis. 

Consider the linear system 

Zj-Z; = Hi(x-x) + Vi+bi, (4.1) 

where x, z;, H;,and vs are as before (see Chapter Two), and 

bj = bias error in measurement of Z; (p-dimensional).     (4.2) 

We assume that expected values of both the random and bias errors 
vanish (i.e., E(v,) = E(b;) = 0), but that bias terms exhibit corre- 
lations from measurement to measurement: 

E(bibjT)*0. (4.3) 

Although sensor biases may be eliminated (to the extent possible) by 
repeated calibration, some slowly varying sensor errors may remain. 

lrrhe correlation time, z, measures roughly the mean time between two successive 
maxima (or minima) of some fluctuating function, f(t). As such, x characterizes the 
rate at which f(t) varies. See F. Reif, Fundamentals of Statistical and Thermal Physics, 
New York: McGraw-Hill, 1965, p. 561. 

41 
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If these are small enough, their effects may be insignificant or toler- 
able, although ignoring them in the filter design and error analysis 
procedure runs the risk of producing misleading uncertainty esti- 
mates. Here, two viewpoints are possible: (1) the estimate of the 
measurement error variance is correct, but it is not recognized that 
an element of it results from bias, or (2) the variance estimate is cor- 
rect for the uncorrelated measurement errors, but an additional bias 
error is present. In any case, the effect of bias on a filter optimized 
for random errors alone can be examined. 

However, if the bias errors are large enough, further calibration or 
redesign of the filter—wherein bias effects are modeled explicitly— 
may be desirable. In what follows, we examine the following two 
questions: What effect will the additional bias term (in Eq. 4.1) have 
on the existing filter optimized for random errors alone? How does 
this compare with results obtained using a filter designed to account 
optimally for both random and bias errors? 

SUBOPTIMAL TREATMENT OF BIAS2 

To address the first question, it is useful to adopt the nomenclature 
of linear systems analysis as developed at the end of Chapter Two.3 

At the ith stage of the filtering process, define the difference between 
the state of the system and its best estimate (after the ith measure- 
ment) as [(Eq. (2.27)] 

e; sxj-x. (4.4) 

The linear system evolves according to 

ei+i = Ai+1ej + Ki+ivi+i + Ki+1bi+1, (4.5) 

2Here we examine the effect of bias errors on an existing filter optimized for random 
errors. There is, consequently, no reason to expect our results to be optimal. For this 
reason, as well as for brevity, in what follows we refer to this treatment as suboptimal. 

It is natural to ask why one would bother using a suboptimal formulation. The answer 
is that if redesigning an existing filter optimized for random errors alone is not 
desirable, the suboptimal approach allows the effects of bias on that filter to be 
examined, albeit as an afterthought. 
3For a similar but more general treatment of this problem, see B. Friedland, 
"Treatment of Bias in Recursive Filtering," IEEE Transactions on Automatic Control, 
Vol. AC-14, No. 4, August 1969, pp. 359-367. 
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where 

A;   = I - KjH; 

Kj   = P;   Hj    Rj 
(4.6) 

and P;r is the error covariance predicted by the filter in the absence 
of bias [see Eq. (2.28)]. Explicitly writing the random and bias contri- 
butions to the error as 

we find 

ei+l = ei+l   +ei+l 

ei+ir - Aj+1e; + Ki+1vi+1 

ei+i   - Ai+1ej  + Ki+ibi+1 

(4.7) 

(4.8) 

To recover the notion of estimates before and after measurement 
(see Table 2.1), we specify an initial guess e0

r whose square expected 
value is the covariance of the state before the first measurement; that 
is, 

MjsE '     r 

eo   eo (4.9) 

In this way, recursive application of Eq. (4.8) yields 

eir = Aieor + K1VI 

e3r = A3e2
r + K3V3 (4.10) 

en
r = Anen-i

r + Knvn . 

Proceeding similarly for the bias contribution, one finds4 

4Choosing egb = 0 is equivalent to requiring the covariance of the state vector before 
the first measurement (i.e., Mj) to result entirely from random errors. Since these 
drive the filter, this choice is appropriate. 
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e» = Kxb, 

e2
b = A^15 + K2b2 

e3b = A3e2
b + K3b3 C4.ll) 

en   = Anen_;L   + Knbn 

Collecting terms for b; = b (a constant), one may write 

en
b = [Kn + AnKn_! + AnAn_iKn_2 + - + AnAn_iAn_2 ••• A^Jb 

(4.12) 

so that the effect of bias on the error covariance of the state will be 
given by 

Pnb-E e ble b = ¥nE[bbT]«Fn
T , (4.13) 

where the total covariance of the state after the nth measurement is 

Pn = Pn
r+Pn\ (4.14) 

Thus, specifying 

B; = E(bibiT) = E(bbT) (4.15) 

enables one to account for (constant) bias effects. Finally, note that 
% also time evolves linearly, as one might expect: 

*Pi+1 - Ai+1*Fi + Kj+i . (4.16) 

In many applications, the bias will not be constant. Indeed, in our 
own formulation utilizing the measurement vector (z1( z2) = (av, Q), 
constant bias errors associated with (av,ah) translate into time- 
dependent errors associated with Q.. In this case, however, we may 
modify the formalism in a straightforward way. Let 

ei+i   _ Ai+1ei  + Ki+1oi+1bi+1 , (4.17) 
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where 

°ibi= 0 g, 

A, A 
i 

h V 

( u   \ 
(4.18) 

and g; is a time-dependent factor. Then Eq. (4.16) is simply modified 

as 

^+i=Ai+1^i+Ki+1ai+1. (4.19) 

In the case of multiple sensors processed sequentially, we may fur- 
ther modify the formalism to allow for multiple biases. In the case of 
two sensors, write 

ei+ib = Ai+1eib + Ki+1o-i+1bi+1 + Ki+iCi+iCi+1, (4.20) 

where q is the bias of the additional sensor. Proceeding as above, 
we define 

ej^^bi+XjC;. (4.21) 

Assume the measurements are processed in an alternating manner, 
with one sensor measuring at odd values of i and the other at even 
values. For odd i, the bias contributions will obey 

whereas for even i, 

Xj = AJXJ.J , 

Xj = AjXj.x + KiOj 

(4.22) 

(4.23) 

Notional Results 

For the example discussed in Chapter Three, the effect of bias on the 
existing filter is illustrated in Figure 4.1, where random and bias er- 
rors are both assumed to be 30 microradians. The launch point 
uncertainly ellipses obtained are larger than in Figure 3.11. 
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Figure 4.1—LPUs (t = 2) for Two Sensors with Random and Bias Errors 
(Suboptimal Filter) 

Figure 4.2 illustrates the time evolution of the launch point estimate 
for the case of a 30-microradian random error and 100-, 30-, and 10- 
microradian bias errors, respectively. Unlike the case with random 
errors alone (Figure 3.12), the LPU derived after the final measure- 
ment does not scale as the square of the error. Moreover, the impor- 
tance of bias is apparent in the large difference between the 30- and 
100-microradian cases. The missile location uncertainty shows simi- 
lar qualitative behavior (see Figure 4.3). 

The effect of varying revisit time in the presence of random and bias 
errors is illustrated in Figures 4.4 and 4.5, respectively. In contrast to 
the unbiased case (Figure 3.16), Figure 4.4 indicates that the LPU de- 
rived after the final measurement is relatively insensitive to revisit 
time when both 30-microradian random and bias errors are present. 
In effect, a point is reached in the filtering sequence where additional 
measurements containing unknown bias errors provide information 
of limited utility. This underscores the point that a high rate of data 
collection will not reduce the launch point uncertainty significantly 
unless random errors dominate the measurement process. Indeed, 



The Effect of Bias Errors    47 

RANDMW37-4.2 

E 

DL 

20 40 60 

Time (sec) 

80 

Bias error 
(microradians) 

100 

Figure 4.2—Sensitivity of LPU (£ = 2) to Bias Error 
(Two Sensors; Suboptimal Filter) 
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Figure 4.3—Sensitivity of MLU (£ = 2) to Bias Error 
(Two Sensors; Suboptimal Filter) 
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Figure 4.4—Sensitivity of LPU ((. = 2) to Revisit Time (Two Sensors; 
Suboptimal Filter) 
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Figure 4.5—Sensitivity of MLU (I = 2) to Revisit Time 
(Two Sensors; Suboptimal Filter) 
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statistics alone do not "beat down" the effects of bias. Although the 
insensitivity to revisit time is not apparent in the case of missile 
location uncertainty (Figure 4.5), the spread in MLU values with 
varying revisit time is reduced by roughly an order of magnitude 
relative to the unbiased case. 

In summary, we show launch point and missile location uncer- 
tainties at apogee (327 sec into the trajectory) in Tables 4.1 and 4.2, 
respectively, for varying revisit times (i.e., numbers of measure- 
ments) and bias errors (treated suboptimally). Note that when the 
bias error is large, increasing the number of measurements can lead 
to larger uncertainties. 

Although counterintuitive, such behavior might be expected from a 
suboptimal formulation, especially when the bias errors are large. In 
such a treatment, the filter applies gains—indeed, sometimes large 
gains—to the system by considering random errors alone [see Eq. 
(2.29)]. As a result, when the effects of bias are examined, they may 
be large because they are amplified by large gains. If the filter was 
aware that bias errors were present, it could adjust these gains ac- 
cordingly. 

These results underscore the importance of properly accounting for 
bias under such circumstances. Next we examine an alternative 
treatment that remedies inconsistencies by incorporating the bias 
terms into the filter directly. 

Table 4.1 

LPUs (£ = 2) for Two Sensors Processed in Stereo 
(Suboptimal Filter3, in km2) 

Number of 

Bias Error(nrad) 

Revisit Rate 
(sec) Measurements 0 10 30 100 

40 5 10.9 12.4 23.7 150.7 

20 10 4.8 6.2 17.2 142.7 

10 20 2.4 3.8 15.1 143.4 

5 40 1.2 2.7 14.2 145.7 

2.5 80 0.6 2.1 13.9 147.9 
a30-microradian random error. 
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Table 4.2 

MLUs (I = 2) at Apogee for Two Sensors Processed in Stereo (Suboptimal 
Filter3; Equivalent Spherical Radii in km) 

Number of 

Bias Error(urad) 

Revisit Rate 
(sec) Measurements 0 10 30 100 

40 5 30.5 31.0 33.8 45.7 
20 10 22.4 23.4 28.5 49.7 
10 20 15.8 17.1 22.2 38.0 
5 40 11.2 13.0 17.6 29.5 
2.5 80 8.0 10.1 14.1 23.5 

a30-microradian random error. 

OPTIMAL TREATMENT OF BIAS 

We are interested in redesigning a filter for the linear system5 

z-z = H(x-x) + v + b , (4.1) 

where x is a six-dimensional vector and the bias term is assumed 
constant but unknown. In our previous construction, bias was 
treated as inherently unobservable, with its effects in some sense 
modeled as an afterthought. In practice, however, it may be possible 
to learn about bias through the measurement sequence, which al- 
lows the filter to adjust the gain optimally, with consideration given 
to both random and bias errors. 

To treat bias as an observable, we first incorporate it into the state 
vector.6 For a single sensor, define 

5For simplicity, the index i is suppressed in this section. 
6See B. Friedland, 1969, p. 360. 
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M rx0 
x2 x2 
*3 x3 
x4 _ x4 
x5 x5 
x6 x6 
x7 bi 

VX8j W 

(4.24) 

where x1 through x6 are defined as before [see Eq. (3.16)], and 

bj = bias on measurement zx 

b2 = bias on measurement z2. (4.25) 

Concurrent with this state vector redefinition, redefine the H-matrix 
as 

H = 
1 0 

3zj 3zj dzl dz1 dzx dzx 

8xj 3x2 3x3 3x4 3x5 3x6 
3z2 ■ 3z2 3z2 3z2 3z2 3z2 

V3xi 3x,    3xo    3x,    3x^    3xfi 

(4.26) 

Since the bias enters the problem as an exacdy linear term, there is 
no need to generate a bias estimate for the purpose of Taylor expan- 
sion [see Eq. (2.18)]. Thus, Eq. (4.1) is rewritten as 

z - z = H(H - E) + v , 

so that the form of the filter without bias is regained. 

(4.27) 

As a result, the framework of Chapter Three may now be applied to 
the bias problem by simply augmenting the state vector and H- 
matrix with additional terms. If we wish to model time-dependent 
errors associated with the choice ((z1;z2) = ((av,Q), [seeEq. (4.18)], 
we may incorporate appropriate factors into H: 
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H = 

3zj 3zx 3zt 3zt dz1    dzl 

dxl    3x2 3x3 3x4 3x5 3x6 
dz2    3z2 3z2 3z: 

dx1    3x2 3x3 3x, 
3z2 

3x5 

9Z2      n 
3 0      g 
3x6 

(4.28) 

Finally, accounting for the bias errors of multiple sensors requires 
additional dimensions. For the case of stereoscopic processing (with 
time-dependent errors in Q), Eqs. (4.24) and (4.28) generalize as 

r. 

where 

x2 

x3 
x4 

x5 

x6 

bn 
b2i 
b12 

vb22y 

bn = bias on measurement zv sensor 1 

b21 = bias on measurement z2, sensor 1 

b12 = bias on measurement zv sensor 2 

b22 = bias on measurement z2, sensor 2, 

\ 

and 

H = 

3zx 3zj 3zj 3zx 3zj 3z2 

3xx 3x? 3x3 3x4 3x5 3xfi 

3z2 3z2 3z2 3z2 3z2 3z2 

3xx 3x2 3x3 3x4 3x5 3x6 

(4.29) 

(4.30) 

10    10 

0    g!    0    g2 

(4.31) 

with the subscripts 1 and 2 on the time-dependent factors referring 
to sensors 1 and 2, respectively. 
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Notional Results 

When the bias is less than or comparable to the random error, one 
would expect the optimal and suboptimal formulations to yield 
roughly similar results. As a comparison of Figures 4.6 and 4.7 with 
Figures 4.1 and 4.2 illustrates, this is indeed the case for launch point 
uncertainty in the example presented here. 

More prominent differences emerge in the missile location uncer- 
tainties. As Figure 4.8 depicts, MLUs calculated optimally are smaller 
and less sensitive to the bias magnitude than corresponding MLUs 
calculated suboptimally. In particular, MLU values in the case of 
100-microradian bias errors are substantially reduced from the val- 
ues shown in Figure 4.3, and all curves appear to coalesce late in the 
trajectory. 

On intuitive grounds, one would expect such behavior: Since uncer- 
tainties late in the trajectory are dominated by "velocity-like" quan- 
tities (heading, loft angle, etc.), and since velocity can be discerned 
from differences in missile position, one would expect the constant 
bias errors to cancel. As a result, uncertainties late in the trajectory 
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47.5 sq km 
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39.6 sq km 
(75- E) 

16.8 sq km 
(stereo) 
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-10 

30-microradian random and bias errors 

Figure 4.6—LPUs (£ = 2) for Two Sensors with Random and Bias Errors 
(Optimal Filter) 
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Figure 4.7—Sensitivity of LPU (t - 2) to Bias Error 
(Two Sensors; Optimal Filter) 
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Figure 4.8—Sensitivity of MLU (t = 2) to Bias Error 
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should be roughly independent of bias. This is not the case for two 
sensors using the suboptimal filter (Figure 4.3), but one can verify 
that with only one sensor this filter also yields curves that coalesce 
late in the trajectory. 

As sensor revisit times are varied, the LPU calculated optimally (see 
Figure 4.9) again shows behavior similar to that calculated subopti- 
mally, in the case when random and bias errors are comparable. On 
the other hand, MLUs demonstrate consistently smaller values in the 
optimal treatment (Figure 4.10), and also exhibit a greater sensitivity 
to the revisit time. 

In summary, we show LPUs and MLUs at apogee in Tables 4.3 and 
4.4, respectively, for varying revisit times and bias errors (treated op- 
timally). In all cases, errors are reduced as the number of measure- 
ments increases. In addition, values are comparable to those ob- 
tained using the suboptimal approach when the bias is smaller than 
or comparable to the random error (see Tables 4.1 and 4.2). 

RANDMH737-f.9 

100 
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20 40 60 

Time (sec) 

80 100 

Figure 4.9—Sensitivity of LPU (I = 2) to Revisit Time 
(Two Sensors; Optimal Filter) 
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Figure 4.10—Sensitivity of MLU (i = 2) to Revisit Time 
(Two Sensors; Optimal Filter) 

Table 4.3 

LPUs (1=2) for Two Sensors Processed in Stereo 
(Optimal Filter1, in km2) 

Number of 
Bias Error(urad) 

Revisit Rate 
(sec) Measurements 0 10 30 100 

40 5 10.9 12.4 23.3 141.5 
20 10 4.8 6.2 16.8 134.3 
10 20 2.4 3.8 14.5 132.0 
5 40 1.2 2.7 13.4 130.8 
2.5 80 0.6 2.1 12.8 130.2 

a30-microradian random error. 
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Table 4.4 

MLUs (I = 2) at Apogee for Two Sensors Processed in Stereo 
(Optimal Filter3; Equivalent Spherical Radii in km) 

Number of 
Bias Error(nrad) 

Revisit Rate 
(sec) Measurements 0 10 30 100 

40 5 30.5 30.9 32.8 35.4 
20 10 22.4 23.3 25.6 27.7 
10 20 15.8 17.0 19.3 21.1 
5 40 11.2 12.8 15.0 16.7 
2.5 80 8.0 9.8 11.8 13.5 

a30-microradian random error. 

Keep in mind, however, that the suboptimal treatment of bias can go 
awry even in instances when the random and bias errors are compa- 
rable. As mentioned previously, if the filter applies large gains during 
the estimation sequence, results obtained treating bias suboptimally 
may differ markedly from those obtained with an optimal formula- 
tion. In all cases, though, the former approach would overestimate 
the error. 

In conclusion, treating bias as an observable quantity consistentiy 
yields smaller uncertainties than those obtained treating bias as an 
afterthought. Within the constraints of this limited analysis, then, 
our use of the terms "optimal" and "suboptimal" is clearly justified. 



 Chapter Five 

CONCLUDING REMARKS 

As theater missile defenses are fielded at the decade's end, satellite 
sensors will likely support vital TMD battle management functions. 
Waging "information warfare" will require increasingly sophisticated 
C3I networks that are capable of piecing together the multifarious 
packets of information required to effect battlespace dominance. In 
this regard, timely transmission throughout the theater is central. 
But successful battle management requires more than connectivity 
alone: The quality of the information being transmitted is para- 
mount. As we have shown, Kaiman filtering of sensor measurements 
can in principle provide such information in the TMD operational 
environment. Thus, our primary focus has been on describing how 
to estimate the operational implications of this technique. 

Table 5.1 summarizes some of the results from Chapters Three and 
Four for a notional missile launch against Israel. Using this table, it is 
possible to derive order-of-magnitude estimates for launch point un- 
certainties in a variety of situations not described explicitly in this 
report. For example, halving the TBM burn time to 50 sec would 
halve the number of measurements obtained, roughly equivalent to 
doubling the sensor revisit time. Including an opaque cloud deck at 
10 km would eliminate measurements obtained during the first 42 
sec of flight, again roughly equivalent to doubling the revisit time. 
Thus, a sensor with a 20-sec revisit time and 30-microradian random 
errors would yield an LPU of about 11 km2 {(. = 2, no bias) in both 
these situations. 

In short, Table 5.1 is a useful guide to the class of numbers one would 
obtain in many situations of interest to TMD. Proper analysis of a 
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Table 5.1 

LPUs (t - 2) for Two Sensors Processed in Stereo3 

(in km2) 

Number of 
Measurements 

Bias Error (urad) 

Revisit Rate 
(seconds) 

Random Error 

(lirads) 0 10 30 100 

40 5 10 
30 

100 

1.5 
10.9 

102.7 

3.0 
12.4 

104.2 

13.7 
23.3 

115.9 

131.2 
141.5 
241.3 

20 10 10 
30 

100 

0.6 
4.8 

47.2 

2.0 
6.2 

48.5 

12.7 
16.8 
59.2 

130.1 
134.3 
177.4 

10 20 10 
30 

100 

0.3 
2.4 

24.2 

1.7 
3.8 

25.5 

12.4 
14.5 
36.0 

129.6 
132.0 
153.6 

5 40 10 
30 

100 

0.1 
1.2 

12.4 

1.6 
2.7 

13.7 

12.2 
13.4 
24.2 

129.2 
130.8 
141.7 

2.5 80 10 
30 

100 

0.1 
0.6 
6.4 

1.5 
2.1 
7.7 

12.0 
12.8 
18.3 

128.5 
130.2 
135.8 

aOptimal filter. 

different scenario requires doing the calculation correctly, as we have 
attempted here. 

In addition, Table 5.1 underscores the point that increasing the data 
collection rate will not reduce the launch point uncertainty signifi- 
cantly unless random errors dominate the measurement process— 
statistics alone do not "beat down" the effects of bias. 

In a similar vein, Table 5.2 summarizes the missile location uncer- 
tainty at apogee (327 sec after launch for the notional TBM), in terms 
of equivalent spherical radius. Because location is unique to a given 
missile trajectory, inferring approximate MLUs for missiles other 
than that used to generate this table is of limited utility. It is possible, 
however, to gain insights regarding MLUs for the same missile in an 
altered operational setting, such as one containing cloud cover. 
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Table 5.2 

MLUs {1 = 2) at Apogee for Two Sensors Processed in Stereoa 

(Equivalent Spherical Radii in km) 

Bias Error (urad) 

Revisit Rate    Number of     Random Error 
(sec) Measurements (urad) 0 10 30 100 

40 5 10 12.3 13.8 16.0 17.6 
30 30.5 30.9 32.8 35.4 

100 68.5 68.6 69.2 72.9 

20 10 10 8.2 10.2 12.3 14.1 
30 22.4 23.3 25.6 27.7 

100 53.7 53.9 54.7 57.9 

10 20 10 5.6 7.6 9.2 11.1 
30 15.8 17.0 19.3 21.1 

100 40.9 41.2 42.4 45.3 

5 40 10 3.9 5.8 7.1 9.2 
30 11.2 12.8 15.0 16.7 

100 31.2 31.6 33.3 35.8 

2.5 80- 10 2.7 4.5 5.5 7.9 
30 8.0 9.8 11.8 13.5 

 100 23.6         24.2         26.3         28.4 
aOptimal filter. 

With the exception of cases in which bias errors are significantly 
larger than random errors, these results (with bias treated optimally) 
would not change appreciably if the bias effects were calculated 
suboptimally. On the other hand, as discussed at the end of Chapter 
Four, there are cases when this approach yields markedly different 
error estimates from the optimal one, even with comparable random 
and bias errors. These cases notwithstanding, reasonable results in 
the suboptimal formulation may be expected so long as the bias is 
not large enough to drive the estimation sequence. If it is, an optimal 
formulation is preferred, if not required.1 

*In any case, the suboptimal treatment yields an upper bound on the error. 
Depending upon the situation at hand, this may be sufficient information. 
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In conclusion, satellite sensors providing the type of information 
described in this report could, if harnessed in a theater of operations, 
enhance the capability of active defenses, passive defenses, and at- 
tack operations. As the above data demonstrate, this is especially 
true of sensors with short revisit times and small measurement er- 
rors, at least insofar as our notional trajectory analysis is concerned. 

We have neglected a number of considerations, however, that could 
increase the uncertainty in our estimates. For example, our missile 
template has a fixed burn time that ignores uncertainty in the missile 
burnout velocity. What if the TBM did not burn its full 100 sec, but 
rather cut off its engines early? Since the acceleration near burnout 
is roughly 8 g's, each second of boost lost to early cutoff reduces the 
velocity by about 80 meters per second. With a velocity near burnout 
of roughly 3 km/sec, the change in TBM range resulting from early 
cutoff is therefore approximated by 

Ar * — = 48Atburnout (km). (5.1) 
g 

Thus, each second of nominal boost lost to early cutoff results in 
roughly 50 kilometers of range reduction. If the missile burned only 
95 sec, its 1200-km trajectory would be reduced to roughly 950 km. It 
is therefore easy to see how this degree of freedom could easily 
dominate the error analysis.2 

Other considerations might also be important, such as template er- 
rors (e.g., different TBM pitch angle profiles, nonplanar TBM mo- 
tion), missile mistyping, effects from a rotating, nonspherical earth, 
process noise, or even missile maneuvering obscured by cloud cover. 

As a final note, it is straightforward to adapt this methodology to dif- 
ferent types of sensors. If interested in radars, for example, one 
would simply augment the matrices by an additional dimension to 
account for range measurements.  Line-of-sight velocity measure- 

2To provide an upper bound on the uncertainty in this case, one could join the two 
error ellipsoids generated by analyzing the full burn and early cutoff trajectories, 
respectively. For an alternative approach, see H. Holtz and L. R. Western, 
Mathematical Assumptions in the MSTP Covariance Analysis, El Segundo, California: 
The Aerospace Corporation, Report No. TOR-95(5411)-l, 1995. 
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ments could be incorporated similarly. In short, the approach is eas- 
ily applied to a wide variety of sensors on spaceborne, airborne, sea- 
based, or ground-based platforms. 



Appendix 

MISSILE TRAJECTORIES ON THE EARTH'S SURFACE 

Ballistic missile trajectory data are most often specified in a generic, 
two-dimensional format (e.g., range and altitude versus time), with- 
out specific reference to the earth's surface. In this case, applying 
the methodology in the main text in a realistic operational setting re- 
quires transforming the data into a format appropriate for describing 
trajectories on the earth's surface. In what follows, we briefly de- 
scribe how this may be accomplished. 

Ballistic missile orbits trace out great circles on the surface of a non- 
rotating earth. For this reason, it is straightforward to employ spheri- 
cal trigonometric relations to translate missile altitude and range 
(specified as a function of time on a curved earth) into a three- 
dimensional trajectory, for a given launch heading. Such a trajectory 
is illustrated in Figure A.l. 

In Figure A.1, lower-case letters refer to angles subtended from the 
earth's center, whereas upper-case letters indicate interior angles of 
the spherical triangle abc formed by the intersection of great circles 
drawn on the earth's surface. More explicitly, 

a = complement of impact latitude 

b = instantaneous missile range/radius of earth (known) 

c = complement of launch latitude (known) 

A = launch heading angle (known) 

B = impact longitude—launch longitude. (A.1) 

Given a launch latitude, launch longitude, initial heading, and an in- 
stantaneous missile range, our goal is to solve for the corrresponding 
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Figure A. 1—Great Circles on the Earth's Surface 

missile latitude and longitude at the same point in time along the 
trajectory. (Without loss of generality, we refer to these as the "im- 
pact" latitude and longitude.) To accomplish this, we use the law of 
sines, 

sin a     sin b 
sin A     sin B 

as well as the law of cosines,1 

cos a = cos b cos c + sin b sin c cos A 

(A.2) 

(A.3) 

With these equations, one can show that the latitude (1) and the 
longitude (L) at impact are given by 

1 = sin_1(cos b cos c + sin b sin c cos A) (A.4) 

1U. R. Spiegel, Mathematical Handbook of Formulas and Tables, New York: McGraw- 
Hill, 1968, p. 19. 
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and 

L = L0 + argfcos b - cos c sin 1, sin b sin c sin A), (A.5) 

respectively, with L0 the longitude at launch and arg(x,y) 
= tan-1(y/x) if x>0; arg(x.y) = tan_1(y/x) + 7c if x < 0; 
arg(x,y) = n/2 if x = 0, y > 0; arg(x,y) = -JI/2 if x = 0, y < 0; and 
arg(x, y) = undefined if x = 0, y = 0. 
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